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Abstract

A non-local theory of elasticity is applied to obtain the dynamic interaction between two collinear cracks in the

piezoelectric materials plane under anti-plane shear waves for the permeable crack surface boundary conditions. Unlike

the classical elasticity solution, a lattice parameter enters into the problem that make the stresses and the electric

displacements finite at the crack tip. A one-dimensional non-local kernel is used instead of a two-dimensional one for

the anti-plane dynamic problem to obtain the stress and electric displacement near the crack tips. By means of the

Fourier transform, the problem can be solved with the help of two pairs of triple integral equations in which the

unknown variable is the jump of the displacement across the crack surface. The solutions are obtained by means of

the Schmidt method. Crack bifurcation is predicted using the strain energy density criterion. Minimum values of the

strain energy density functions are assumed to coincide with the possible locations of fracture initiation. Bifurcation

angles of �5� and �175� are found. The result of possible crack bifurcation was not expected before hand.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that the piezoelectric materials

produce an electric field when deformed, and un-

dergo deformation when subjected to an elec-

tric field. The coupling nature of piezoelectric
materials has attracted wide applications in elec-

tric-mechanical and electric devices, such as elec-

tric-mechanical actuators, sensors and structures.

When subjected to mechanical and electrical loads

in service, these piezoelectric materials can fail

prematurely due to their brittleness and by the

presence of defects or flaws produced during their

manufacturing process. Therefore, it is important
to study the electro-elastic interaction and fracture

behavior of piezoelectric materials, especially when

multiple cracks are involved.

In theoretical studies of crack problems, sev-

eral different electric boundary conditions at the

crack surfaces have been proposed by numer-

ous researchers [1–7]. The crack surfaces being

*Corresponding author. Tel.: +86-451-641-4145; fax: +86-

451-623-8476.

E-mail address: zhouzhg@hope.hit.edu.cn (Z.G. Zhou).

0167-8442/03/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0167-8442(02)00157-X

Theoretical and Applied Fracture Mechanics 39 (2003) 169–180

www.elsevier.com/locate/tafmec

mail to: zhouzhg@hope.hit.edu.cn


impermeable to electric fields were adopted in

[1,2,4,5]. The impermeable crack assumption refers

to crack surfaces that are free of surface charge and

thus the electric displacement vanishes insides the

crack. Cracks in the piezoelectric materials may

consist of vacuum, air or some other gas. Electric
fields can thus propagate through the crack such

that the electric displacement component perpen-

dicular to the crack surfaces could be continuous

across the crack surfaces as in [3,6,7] where elec-

tric boundary conditions at the crack surfaces

were considered. It is interesting to note that very

different results were obtained by changing the

boundary conditions. However, these solutions
contain stress and electric displacement singularity.

The state of stress near the tip of a sharp line crack

in an elastic plane for non-local theories using a

uniform tension, shear and anti-plane shear were

discussed in [8–10]. These solutions gave finite

stresses at the crack tip. The solutions in [8–10],

however, were not exact and were reexamined

in [11–13] using a different approach. Recently
[14,15], the state of the dynamic stress near the tip

of a line crack or two line cracks in an elastic plane

were investigated by use of non-local theory. These

solutions did not contain any stress singularity.

In the present paper, the scattering of harmonic

elastic anti-plane shear waves by two collinear

symmetrical permeable cracks in the piezoelectric

materials is investigated by use of non-local the-
ory. The traditional concept of linear elastic frac-

ture mechanics and the non-local theory are

extended to include the piezoelectric effects. To

overcome the mathematics difficulties, some as-

sumptions as in [16,17] were invoked. A one-

dimensional non-local kernel function is used

instead of a two-dimensional kernel function for

the anti-plane dynamic problem to obtain the
stress and electric displacement occur at the crack

tips. Fourier transform technology is applied and a

mixed boundary value problem is reduced to two

pairs of triple integral equations. In solving the

triple integral equations, the jump of the dis-

placement across the crack surface is expanded in

a series of Jacobi polynomials. This process is

quite different from those adopted in the previ-
ous works as mentioned above [1–4,6–10]. As ex-

pected, the solution in this paper does not contain

the stress and electric displacement singularity at

the crack tip. The stress field and the electric field

for the non-local theory are similar to that of the

classical elasticity solution away from the crack

tips. Near the crack tip, a lattice parameter tends

to control the amplitude of the stress, the electric
displacement and the energy density. The energy

density results are used to examine the crack ini-

tiation characteristics.

2. Non-local piezoelectric materials

For the anti-plane shear problem, the basic
equations of linear, homogeneous, isotropic, non-

local piezoelectric materials, with vanishing body

force are [6,8–10]

osxz
ox

þ osyz
oy

¼ q
o2w
ot2

ð1Þ

oDx
ox

þ oDy
oy

¼ 0 ð2Þ

skzðX ; tÞ ¼
Z
V
½c044ðjX 0 	 X jÞw;kðX 0; tÞ

þ e015ðjX 0 	 X jÞ/;kðX 0; tÞ
dV ðX 0Þ

ðk ¼ x; yÞ ð3Þ

DkðX ; tÞ ¼
Z
V
½e015ðjX 0 	 X jÞw;kðX 0; tÞ

	 e011ðjX 0 	 X jÞ/;kðX 0; tÞ
dV ðX 0Þ

ðk ¼ x; yÞ ð4Þ

where the only difference from the classical electro-

elastic theory is that the stress szkðX ; tÞ and the
electric displacement DkðX ; tÞ at a point X depends
on w;kðX ; tÞ and /;kðX ; tÞ, at all points of the body.
w and / are the mechanical displacement and
electric potential. For homogeneous and isotropic

piezoelectric materials there exist only three ma-

terial parameters, c044ðjX 0 	 X jÞ, e015ðjX 0 	 X jÞ and
e011ðjX 0 	 X jÞ which are functions of the distance
jX 0 	 X j. q is the density of the piezoelectric
materials. The integrals in (3) and (4) are over

the volume V of the body enclosed within a sur-
face oV .

170 Z.G. Zhou et al. / Theoretical and Applied Fracture Mechanics 39 (2003) 169–180



As discussed in the papers [18,19], the form of

c044ðjX 0 	 X jÞ, e015ðjX 0 	 X jÞ and e011ðjX 0 	 X jÞ can
be expressed

ðc044; e015; e011Þ ¼ ðc44; e15; e11ÞaðjX 0 	 X jÞ ð5Þ
where aðjX 0 	 X jÞ is known as the influence func-
tion and is a function of the distance jX 0 	 X j, c44,
e15 and e11 are the shear modulus, piezoelectric
coefficient and dielectric parameter, respectively.

Substitution of Eq. (5) into Eqs. (3) and (4)

yields

skzðX ; tÞ ¼
Z
V
aðjX 0 	X jÞrkzðX 0; tÞdV ðX 0Þ ðk ¼ x; yÞ

ð6Þ

DkðX ; tÞ ¼
Z
V
aðjX 0 	X jÞDckðX 0; tÞdV ðX 0Þ ðk ¼ x; yÞ

ð7Þ
where

rkz ¼ c44w;k þ e15/;k ð8Þ

Dck ¼ e15w;k 	 e11/;k ð9Þ

The expressions (8) and (9) are the classical con-

stitutive equations.

3. The crack model

It is assumed that there are two collinear sym-

metric cracks of length 1	 b along the x-axis in the
piezoelectric materials plate as shown in Fig. 1. 2b
is the distance between the two cracks. In this

paper, the harmonic anti-plane shear wave is ver-
tically incident. Let x be the circular frequency of
the incident wave. 	s0 is a magnitude of the inci-
dent wave. In what follows, the time dependence

of all field quantities assumed to be of the form

e	ixt will be suppressed but understood. It is fur-

ther supposed that the two surfaces of the crack do

not come in contact during vibrations. The solu-

tion of two collinear symmetric cracks of arbitrary
finite length can easily be obtained by a simple

change in the numerical values of the present

problem. The piezoelectric boundary-value prob-

lem for anti-plane shear is considerably simplified

if the out-of-plane displacement and the in-plane

electric fields were only considered. Since no

opening displacement exists for the present anti-

plane problem, the crack surfaces can be assumed

to be in perfect contact. Accordingly, permeable

condition will be enforced in the present study, i.e.,
both the electric potential and the normal electric

displacement are assumed to be continuous across

the crack surfaces. So the boundary conditions of

the present problem are

sð1Þyz ðx; 0þ; tÞ ¼ sð2Þyz ðx; 0	; tÞ ¼ 	s0; b6 jxj6 1
ð10Þ

Dð1Þ
y ðx; 0þ; tÞ ¼ Dð2Þ

y ðx; 0	; tÞ;
/ð1Þðx; 0þ; tÞ ¼ /ð2Þðx; 0	; tÞ; jxj61

ð11Þ

wð1Þðx; 0þ; tÞ ¼ wð2Þðx; 0	; tÞ ¼ 0;
0 < jxj < b; 1 < jxj ð12Þ

wðkÞðx; y; tÞ ¼ /ðkÞðx; y; tÞ ¼ 0;
for ðx2 þ y2Þ1=2 ! 1 ðk ¼ 1; 2Þ ð13Þ

Note that all quantities with superscript k (k ¼ 1,
2) refer to the upper half-plane and lower half-

plane. Substituting Eqs. (6) and (7) into Eqs. (1)

and (2), respectively, using Green–Gauss theorem,

it can be obtained [10]Z
V

Z
aðjx0 	 xj; jy0 	 yjÞ½c44r2wðx0; y 0; tÞ

þ e15r2/ðx0; y0; tÞ
dx0 dy0 	
Z 	b

	1

�
þ
Z 1

b

�

� aðjx0 	 xj; 0Þ ryzðx0; 0; tÞ dx0 ¼ q
o2w
ot2

ð14Þ

Fig. 1. Cracks in the piezoelectric materials.
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Z
V

Z
aðjx0 	 xj; jy 0 	 yjÞ½e15r2wðx0; y0; tÞ

	 e11r2/ðx0; y0; tÞ
dx0 dy0 	
Z 	b

	1

�
þ
Z 1

b

�
� aðjx0 	 xj; 0Þ Dcyðx0; 0; tÞ dx0 ¼ 0 ð15Þ

where the boldface bracket indicates a jump at the

crack line, i.e.

ryzðx0; 0; tÞ ¼ ryzðx0; 0þ; tÞ 	 ryzðx0; 0	; tÞ
r2 ¼ o2=ox2 þ o2=oy2 is the two dimensional La-
place operator. Under the applied anti-plane shear

load on the unopened surfaces of the crack, the

displacement field and the electric potential pos-
sess the following symmetry regulations

wðx;	y; tÞ ¼ 	wðx; y; tÞ;
/ðx;	y; tÞ ¼ 	/ðx; y; tÞ

ð16Þ

Using Eq. (16), it can be found that

ryzðx; 0; tÞ ¼ 0 ð17Þ

Dcyðx; 0; tÞ ¼ 0 ð18Þ

Hence the line integrals in (14) and (15) vanish. By
taking the Fourier transform of (14) and (15) with

respect to x0, it can be shown thatZ 1

0

�aaðjsj; jy 0 	 yjÞ c44
d2�wwðs; y0; tÞ
dy2

"(
	 s2�wwðs; y0; tÞ

#

þ e15
d2 �//ðs; y0; tÞ
dy2

"
	 s2 �//ðs; y0; tÞ

#)
dy0 ¼ 	qx2�ww

ð19Þ

Z 1

0

�aaðjsj; jy 0 	 yjÞ e15
d2�wwðs; y0; tÞ
dy2

"(
	 s2�wwðs; y0; tÞ

#

	 e11
d2 �//ðs; y0; tÞ
dy2

"
	 s2 �//ðs; y0; tÞ

#)
dy0 ¼ 0 ð20Þ

Here a superposed bar indicates the Fourier
transform, e.g.

�ff ðs; yÞ ¼
Z 1

0

f ðx; yÞ expðisxÞdx

What now remains is to solve the integrodiffer-

ential equations (19) and (20) for the function w

and /. It seems obvious that a rigorous solution of
such a problem encounters serious if not unsur-

mountable mathematical difficulties, and one has

to resort to an approximate procedure. In this

given problem, according to the assumptions as in
[16,17] papers, the non-local interaction in y-
direction can be ignored. It can be given

�aaðjsj; jy0 	 yjÞ ¼ �aa0ðsÞdðy0 	 yÞ ð21Þ
From Eqs. (19) and (20), it can be shown that

�aa0ðsÞ c44
d2�wwðs; y; tÞ
dy2

"(
	 s2�wwðs; y; tÞ

#

þ e15
d2 �//ðs; y; tÞ
dy2

"
	 s2 �//ðs; y; tÞ

#)
¼ 	qx2�ww

ð22Þ

e15
d2�wwðs; y; tÞ
dy2

"
	 s2�wwðs; y; tÞ

#

	 e11
d2 �//ðs; y; tÞ
dy2

"
	 s2 �//ðs; y; tÞ

#
¼ 0 ð23Þ

The general solutions of Eqs. (22) and (23) satis-

fying (13) are, respectively,

wð1Þðx; y; tÞ ¼ 2
p

Z 1

0

A1ðsÞe	cy cosðxsÞds; yP 0

ð24Þ

/ð1Þðx; y; tÞ 	 e15
e11
wð1Þðx; y; tÞ

¼ 2
p

Z 1

0

B1ðsÞe	sy cosðxsÞds; yP 0 ð25Þ

wð2Þðx; y; tÞ ¼ 2
p

Z 1

0

A2ðsÞecy cosðxsÞds; y6 0

ð26Þ

/ð2Þðx; y; tÞ 	 e15
e11
wð2Þðx; y; tÞ

¼ 2
p

Z 1

0

B2ðsÞesy cosðxsÞds; y6 0 ð27Þ

where c2 ¼ s2 	 x2=c2�aa0ðsÞ, c2 ¼ l=q and l ¼ c44þ
e215=e11. A1ðsÞ, B1ðsÞ, A2ðsÞ and B2ðsÞ are unknown
functions to be determined by the boundary con-

ditions. For solving the problem, the jump func-
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tions of the displacements and the electric poten-

tials across the crack surfaces are defined as fol-

lows

fwðxÞ ¼ wð1Þðx; 0þ; tÞ 	 wð2Þðx; 0	; tÞ;
f/ðxÞ ¼ /ð1Þðx; 0þ; tÞ 	 /ð2Þðx; 0	; tÞ

ð28Þ

Substituting (24)–(27) into (28), and applying the

Fourier transform, it can be obtained

�ffwðsÞ ¼ A1ðsÞ 	 A2ðsÞ;
�ff/ðsÞ ¼

e15
e11

½A1ðsÞ 	 A2ðsÞ
 þ B1ðsÞ 	 B2ðsÞ
ð29Þ

Substituting Eqs. (27) and (28) into Eqs. (10)–(12),

it can be obtained

	 lc½A1ðsÞ þ A2ðsÞ
 	 e15s½B1ðsÞ þ B2ðsÞ
 ¼ 0;
B1ðsÞ þ B2ðsÞ ¼ 0 ð30Þ

e15
e11

½A1ðsÞ 	 A2ðsÞ
 þ B1ðsÞ 	 B2ðsÞ ¼ 0 ð31Þ

By solving four Eqs. (29)–(31) with four unknown

functions and applying the boundary conditions

(10) and (11), it can be obtained

1

p

Z 1

0

�aa0ðsÞ lc

�
	 e

2
15

e11
s
	
�ffwðsÞ cosðsxÞds ¼ s0;

b6 jxj6 1 ð32Þ

1

p

Z 1

0

�ffwðsÞ cosðsxÞds ¼ 0; 0 < jxj < b; 1 < jxj

ð33Þ

and �ff/ðsÞ ¼ 0, f/ðxÞ ¼ 0 for all s and x. To deter-
mine the unknown function �ffwðsÞ, the triple inte-
gral equations (32) and (33) must be solved.

4. Solution of the triple integral equation

The triple integral equations (32) and (33)

cannot be transformed into Fredholm integral

equation of the second kind as in [9,10], because

the kernel of Fredholm integral equation of the

second kind in [9,10] is divergent. In [9,10], the

Fredholm integral equation of the second kind can

be rewritten as following

hðxÞ þ
Z 1

0

hðuÞLðx; uÞdu ¼ gðxÞ

where gðxÞ is known function, hðxÞ is unknown
function.

The kernel of Fredholm integral equation of the

second kind in [10] can be written as follows:

Lðx; uÞ ¼ ðxuÞ1=2
Z 1

0

tkðe0tÞJ0ðxtÞJ0ðutÞdt;

06 x; u6 1

where JnðxÞ is the Bessel function of order n.

kðe0tÞ ¼ 	Uðe0tÞ; lim
t!1

kðe0tÞ 6¼ 0 for e0 ¼ a
2bl

6¼ 0

ðlis the length of the crackÞ:

J0ðxÞ �
ffiffiffiffiffi
2

px

r
cos x
�

	 1
4
p

�
for x� 0

The limit of tkðe0tÞJ0ðxtÞJ0ðutÞ is unequal to zero
for t! 1. So the kernel Lðx; uÞ in [10] is divergent.
Of course, the triple integral equations (32) and

(33) can be considered to be a single integral

equation of the first kind with a discontinuous

kernel [8]. It is well-known in the literature that

integral equations of the first kind are generally ill-

posed in the sense of Hadamard, e.g. small per-

turbations of the data can yield arbitrarily large
changes in the solution. This makes the numerical

solution of such equations quite difficult. In this

paper, the Schmidt method [20] was used to

overcome the difficulty. As discussed in [8–10], it

was taken

a0 ¼ v0 expð	ðb=aÞ2ðx0 	 xÞ2Þ; v0 ¼ b=a
ffiffiffi
p

p

ð34Þ
where b is a constant (here b ¼ e0

ffiffiffi
p

p
=ð1	 bÞ, e0 is

a constant appropriate to each material). a is the
lattice parameter. So it can be obtained

�aa0ðsÞ ¼ expð	ðsaÞ2=ð2bÞ2Þ ð35Þ

and �aa0ðsÞ ¼ 1 for the limit a! 0, so that Eqs. (32)
and (33) reduce to a set of triple integral equation

for the same problem in the classical theory [21].

Here the Schmidt method can be used to solve the
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triple integral equations (32) and (33). The gap

functions of the crack surface displacement can be

represented by the following series:

fwðxÞ ¼ wð1Þðx; 0þ; tÞ 	 wð2Þðx; 0	; tÞ

¼
X1
n¼0

anP ð1=2;1=2Þ
n

x	 1þb
2

1	b
2

 !
1

 
	

x	 1þb
2

� �2
1	b
2

� �2
!1=2

for b6 x6 1; ð36Þ

fwðxÞ ¼ wð1Þðx; 0þ; tÞ 	 wð2Þðx; 0	; tÞ ¼ 0
for 0 < x < b; 1 < x; y ¼ 0 ð37Þ

where an is unknown coefficients to be determined
and P ð1=2;1=2Þ

n ðxÞ is a Jacobi polynomial [22]. The
Fourier transformation of Eq. (36) is [23]

�ffwðsÞ ¼
X1
n¼0

anQnGnðsÞ
1

s
Jnþ1 s

1	 b
2

� �
ð38Þ

Qn ¼ 2
ffiffiffi
p

p C nþ 1þ 1
2

� �
n!

;

GnðsÞ ¼
ð	1Þn=2 cos s 1þb

2

� �
; n ¼ 0; 2; 4; 6; . . .

ð	1Þðnþ1Þ=2 sin s 1þb
2

� �
; n ¼ 1; 3; 5; 7; . . .

(

ð39Þ

where CðxÞ and JnðxÞ are the Gamma and Bessel
functions. For the non-local theory problem. Sub-

stituting Eq. (38) into Eqs. (32) and (33), Eq. (33)

can be automatically satisfied, and Eq. (32) are

reduced to the formX1
n¼0

anQn

Z 1

0

�aa0ðsÞ½lc=s	 e215=e11
GnðsÞ

� Jnþ1 s
1	 b
2

� �
cosðsxÞds ¼ ps0 ð40Þ

For a large s, the integrands of Eq. (40) almost
decreases exponentially. So the semi-infinite inte-

gral in Eq. (40) can be evaluated numerically. Eq.

(40) can now be solved for the coefficients an by the
Schmidt method [20] as shown in Appendix A.

5. Numerical calculations

From the works in [11–13,24], it can be seen

that the Schmidt method is performed satisfacto-

rily if the first 10 terms in infinite series to Eq. (40)

are retained. Although the entire perturbation

stress field and the perturbation electric displace-

ment field can be determined from coefficients an,
it is importance in fracture mechanics to determine

the dynamic the stress sð1Þyz , the electric displace-
ment Dð1Þ

y and the volume energy density function

dW ð1Þ=dV in the vicinity of the crack tips as men-
tioned in [25–27]. sð1Þyz , D

ð1Þ
y and dW

ð1Þ=dV can be
expressed, respectively, as

syzðx; 0; tÞ ¼ sð1Þyz ðx; 0; tÞ

¼ 	 1
p

X1
n¼0

anQn

Z 1

0

�aa0ðsÞ
lc
s

h
	 e215=e11

i

� GnðsÞJnþ1 s
1	 b
2

� �
cosðxsÞds ð41Þ

Dyðx; 0; tÞ ¼ Dð1Þ
y ðx; 0; tÞ

¼ 	 e15
p

X1
n¼0

anQn

Z 1

0

�aa0ðsÞGnðsÞ

� Jnþ1 s
1	 b
2

� �
cosðxsÞds ð42Þ

dW ðr; h; tÞ
dV

¼ dW
ð1Þðx; y; tÞ
dV

¼ 1
2

sð1Þxz
owð1Þ

ox
þ 1
2
sð1Þyz

owð1Þ

oy

þ 1
2
Dð1Þ
x E

ð1Þ
x þ 1

2
Dð1Þ
y E

ð1Þ
y ð43Þ

where x ¼ 1þ r cos h, y ¼ r sin h for the outer
crack tip, x ¼ bþ r cos h, y ¼ r sin h for the inner
crack tip (r is the polar radius and h is the polar
angle as shown in Fig. 1.). Eð1Þ

x and E
ð1Þ
y are the

electric field intensity, i.e. Eð1Þ
x ¼ 	o/ð1Þ=ox, Eð1Þ

y ¼
	o/ð1Þ=oy.
For a ¼ 0 at x ¼ b; 1, the classical stress and the

electric displacement singularity will occur at the
crack tips. However, so long as a 6¼ 0, the semi-
infinite integration and the series in Eqs. (41) and

(42) are convergent for any variable x. Eqs. (41)
and (42) give a finite stress, a finite electric dis-

placement all along y ¼ 0, so there is no stress and
the electric displacement singularity at the crack

tips. At b < x < 1, syz=s0 is very close to unity, and
for x > 1, syz=s0 and Dy=D0 possess finite values
diminishing from a finite value at x ¼ 1 to zero at
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x ¼ 1. Since a=2b > 1=100 represents a crack
length of less than 100 atomic distances as stated

in [10], and such submicroscopic sizes other serious

questions arise regarding the interatomic arrange-

ments and force laws, the solution is not pursued

at such small crack sizes. The semi-infinite nu-
merical integrals are evaluated easily by Filon�s
method and Simpson methods because of the

rapid diminution of the integrands. In the com-

putations, the piezoelectric material is assumed to

be the commercially available piezoelectric PZT-

5H. The material constants of PZT-5H are c44 ¼
2:3ð�1010 N=m2Þ, e15 ¼ 17:0 (C/m2) and e11 ¼
150:4ð�10	10 C=Vm2Þ. The solution of two col-
linear cracks of arbitrary length a	 b can easily be
obtained by a simple change in the numerical

values of the present paper (a > b > 0), i.e., it can
use the results of the collinear cracks of length

1	 b=a in the present paper. The solution of this
paper is suitable for the arbitrary length two col-

linear cracks.

6. Discussion

The aim of the present paper was to study the
application of non-local theory in fracture me-

chanics of the piezoelectric materials. The other

aim of the present paper was to show that the

Schmidt method can be used to solve this kind of

the triple (dual) integral equation which the limit

of the kernel does not tend to a constant. This

method is more exact and more appropriate than

that in [10] for the problem at hand. No stress
singularity is present at the crack tip. The effects of

the geometry of the interacting cracks, the fre-

quency of the incident wave and the lattice pa-

rameter upon the dynamic stress and the electric

displacement fields of the crack were examined.

The volume energy density function that was

proposed in [25] will be used as a fracture criterion

in contrast to the Griffith�s energy release rate that
was found to yield unphysical results for piezo-

electric materials [26,27]. The volume energy den-

sity function dW =dV near the crack tips is thus
adopted. The results of the present paper are

plotted in Figs. 2–14. From the results, the fol-

lowing observations can be made:

(i) The maximum perturbation stress and the

perturbation electric displacement do not occur at

the crack tip, but slightly away from it. This phe-

nomenon has been thoroughly substantiated

in [28]. The maximum stress and the maximum

Fig. 2. The stress at the crack tip versus b for a=2b ¼ 0:001,
x=c ¼ 0:2 (PZT-5H).

Fig. 3. The electric displacement at the crack tip versus b for
a=2b ¼ 0:001, x=c ¼ 0:2 (PZT-5H).
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electric displacement are finite. The distance be-
tween the crack tip and the maximum stress point

is very small, and it depends on the crack length

and the lattice parameter. No stress and the elec-

tric displacement singularity are present at the

crack tip, and also the present results converge to

the classical ones when far away from the crack

Fig. 4. The stress at the crack tip versus x=c for a=2b ¼ 0:0001,
b ¼ 0:1 (PZT-5H).

Fig. 5. The electric displacement at the crack tip versus x=c for
b ¼ 0:1, a=2b ¼ 0:0001 (PZT-5H).

Fig. 6. The stress at the crack tip versus b for a=2b ¼ 0:0005,
x=c ¼ 0:2 (PZT-5H).

Fig. 7. The stress at the crack tip versus x=c for a=2b ¼ 0:0005,
b ¼ 0:1 (PZT-5H).
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tip. The dynamic stress and electric displacement
at the crack tip becomes infinite as the atomic

distance a! 0. This corresponds to the classical
continuum limit of square root singularity.

(ii) The left tip�s stress and the electric dis-
placement are greater than the right tip�s ones for

the right crack for x=c < 1:8. Whereas, the left
tip�s stress and the electric displacement are smal-
ler than the right tip�s ones for the right crack for
x=c > 1:8. This phenomenon should be further

Fig. 8. The stress along the crack line versus x for x=c ¼ 0:2,
b ¼ 0:1, a=2b ¼ 0:001 (PZT-5H).

Fig. 9. The electric displacement along the crack line versus x
for x=c ¼ 0:2, a=2b ¼ 0:001, b ¼ 0:1 (PZT-5H).

Fig. 10. The stress along the crack line versus x for x=c ¼ 0:2,
b ¼ 0:1, a=2b ¼ 0:0005 (PZT-5H).

Fig. 11. Variations of dimensionless strain energy density

function with polar angle for r ¼ 0:001, x=c ¼ 0:3, a ¼ 0:0001,
b ¼ 0:1 near the outer crack tip (PZT-5H).
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investigated. The stress and the electric displace-
ment on the crack line increase with increasing of

the length of the crack. However, the dynamic

perturbation stress and the perturbation electric
displacement at the crack tips tend to decrease

with increasing of a=2b.
(iii) The dimensionless perturbation stress and

the electric displacement depend on the length of

the crack, the lattice parameter, the material pa-

rameters, the circular frequency of the incident

wave and the wave velocity.

(iv) In contrast to the impermeable crack sur-
face condition solution as shown in [29], it is found

that the perturbation electric displacement field for

the permeable crack surface conditions is much

smaller than the results for the impermeable crack

surface conditions.

(v) The dynamic perturbation stress and the

electric displacement at the crack tips tend to in-

crease with the frequency reaches a peak and then
to decrease in magnitude. It can be shown that the

stresses at the crack tips show a maximum value

near a certain frequency. So the stress field can

reach the minimum value by changing the fre-

quency of the incident wave, the lattice parameter

and the length of the crack.

Fig. 12. Variations of dimensionless strain energy density

function with polar angle for r ¼ 0:001, x=c ¼ 0:3, a ¼ 0:0001,
b ¼ 0:1 near the inner crack tip (PZT-5H).

Fig. 13. Variations of dimensionless strain energy density

function with polar angle for r ¼ 0:001, x=c ¼ 0:3, a ¼ 0:0005,
b ¼ 0:1 near the outer crack tip (PZT-5H).

Fig. 14. Variations of dimensionless strain energy density

function with polar angle for r ¼ 0:001, x=c ¼ 0:3, a ¼ 0:0005,
b ¼ 0:1 near the inner crack tip (PZT-5H).
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(vi) For 0� < h < 10� and 170� < h < 180�, the
volume energy density function dW =dV near the
crack tips tends to decrease with polar angle h
reaches a peak and then to increase in magnitude

for the outer crack tip and the inner crack tip as

shown in Figs. 11–14. The minimum value of
dW =dV is found to occur at about 5� at the outer
crack tip, the minimum value of dW =dV is found
to occur at about 175� at the inner crack tip. Be-
cause of the symmetry, the minimum value of

dW =dV will also occur at about )5� at the outer
crack tip, the minimum value of dW =dV will also
occur at about )175� at the inner crack tip. As
discussed in [25], these can be used to predict the
bifurcate direction of the crack growth under

electric and mechanical combined mixed mode

conditions.

(vii) For 10� < h < 90� and 90� < h < 170�, the
volume energy density function dW =dV near the
outer crack tip and the inner crack tip tends to

increase with polar angle h reaches a peak and
then to decrease in magnitude. According to the
plot of the volume energy density function dW =dV
versus angle h near the crack tips, the maximum
value of dW =dV is found to occur at about 35� at
the outer crack tip, the maximum value of dW =dV
is found to occur at about 150� at the inner crack
tip.

(viii) The traditional concept of linear elastic

fracture mechanics and the non-local theory can
be used to solve the fracture problem in the pi-

ezoelectric materials.
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Appendix A

For brevity, Eq. (40) can be rewritten asX1
n¼0

anEnðxÞ ¼ UðxÞ; b < x < 1 ðA:1Þ

where EnðxÞ and UðxÞ are known functions and an
are unknown coefficients. A set of functions PnðxÞ
which satisfy the orthogonality conditionZ 1

b
PmðxÞPnðxÞdx ¼ Nndmn; Nn ¼

Z 1

b
P 2n ðxÞdx

ðA:2Þ
can be constructed from the function, EnðxÞ, such
that

PnðxÞ ¼
Xn
i¼0

Min

Mnn
EiðxÞ ðA:3Þ

where Mij is the cofactor of the element dij of Dn,
which is defined as

Dn ¼

d00; d01; d02; . . . ; d0n
d10; d11; d12; . . . ; d1n
d20; d21; d22; . . . ; d2n
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

dn0; dn1; dn2; . . . ; dnn

2
66666666666664

3
77777777777775
;

dij ¼
Z 1

b
EiðxÞEjðxÞdx ðA:4Þ

Using Eqs. (A.1)–(A.4), it can be obtained

an ¼
X1
j¼n
qj
Mnj

Mjj
with qj ¼

1

Nj

Z 1

b
UðxÞPjðxÞdx

ðA:5Þ
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